173
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and spectral studies of nickel(II) complexes derived from disalicylaldehyde oxaloyldihydrazone

, , , , &
Pages 3864-3874 | Received 04 Feb 2009, Accepted 16 May 2009, Published online: 15 Oct 2009
 

Abstract

The mononuclear nickel(II) complex [Ni(H2slox)(H2O)3] (1) and polymeric dinuclear complexes [Ni2(slox)(A4)] {A = H2O (2), py (3), 2-pic (4), 3-pic (5) and 4-pic (6)} and the discrete binuclear complexes [Ni2(slox)(NN)3] {NN = bpy (7) and phen (8)} have been synthesized from disalicylaldehyde oxaloyldihydrazone (H4slox) in methanol. All of the complexes are nonelectrolytes. Complexes 1, 7, and 8 are paramagnetic while binuclear 26 possess anomalously low μ eff value, indicating considerable metal–metal interaction. Discrete binuclear 7 and 8 have no interaction between the two nickel(II) ions. The anomalously low magnetic moment values in 26 are explained as metal–metal interaction via phenoxide bridge. Such metal–metal interactions are less in 7 and 8 due to coordination of bipyridine and phenanthroline molecules which do not allow phenoxide bridging. The dihydrazone coordinates to the metal center as a dibasic tridentate ligand in keto-enol form in staggered configuration in 1, while in the remaining complexes the dihydrazone is tetrabasic hexadentate in enol form in anticis configuration. The metal center has a tetragonally distorted octahedral stereochemistry.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.