221
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization, DNA binding, photo-induced DNA cleavage, and antimicrobial activity of metal complexes of a Schiff base derived from bis(3-aminophenyl)malonamide

, &
Pages 3969-3985 | Received 28 Mar 2009, Accepted 03 Jul 2009, Published online: 22 Sep 2010
 

Abstract

The peptide linkage Schiff base (H2L) and its complexes have been synthesized and fully characterized by elemental analysis, UV–Vis, FTIR, 1H-NMR, 13C-NMR, EPR, and FAB-mass spectra. The stoichiometry of the complexes is [ML] (where M = Cu(II), Co(II), Ni(II), Zn(II), and VO(IV)). All the complexes exhibit square-planar geometry except the vanadyl complex which has square-pyramidal geometry. Interactions of the complexes and free ligand with double-stranded calf thymus DNA (CT-DNA) are studied by UV-spectrophotometric, electrochemical, and viscosity measurements. The data suggest that all the complexes form adducts with DNA and distort the double helix by changing the base stacking. Vanadyl complex forms a weaker adduct to CT-DNA than other complexes, probably due to the square-pyramidal geometry. CT-DNA induces extensive distortion in the planarity of vanadyl complex as EPR spectral calculations reveal. The intrinsic binding constants (K b) of [ZnL], [CuL], [CoL], and [NiL] are 1.1 × 105, 1.4 × 105, 0.8 × 105, and 0.6 × 105 M−1, respectively. Photo-induced DNA cleavage indicates that all complexes cleave DNA effectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding for the synthesized complexes. The antimicrobial results indicate that the complexes inhibit the growth of bacteria and fungi more than the free ligand.

Acknowledgments

The authors express their heartfelt thanks to the College Managing Board, VHNSN College, Virudhunagar, for providing research facilities. N. Raman and A. Sakthivel express their gratitude to the UGC, New Delhi, for financial assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.