354
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, spectral characterization, and antimicrobial studies of metal complexes of the Schiff base derived from [4-amino-N-guanylbenzene sulfonamide] and salicylaldehyde

, , &
Pages 884-893 | Received 08 Apr 2009, Accepted 01 Oct 2009, Published online: 26 Feb 2010
 

Abstract

Sulfaguanidinesalicylaldimine is a good bacteriostatic and a good complexing agent. Schiff-base complexes of Cu(II), Ni(II), Co(II), Zn(II), Cd(II), VO(IV), and UO2(VI) have been synthesized. The structural features of the complexes have been confirmed by microanalytical data, FAB mass, IR, UV-Vis, 1H-NMR, and EPR spectra. Molar conductance indicates the presence of nonelectrolytes. Spectroscopic and other analytical studies reveal the square-planar geometry for copper, square-pyramidal geometry for oxovanadium, seven-coordinate UO2(VI) complex, and octahedral geometry for other complexes. The EPR spectrum of the copper complex in the powdered form at 77 K was recorded. The redox behavior of the copper and oxovanadium complexes was studied using cyclic voltammetry. Antimicrobial activities of the compounds have been studied against microorganisms such as Escherichia coli, Staphylococcus aureus, and Candida by well-diffusion technique in DMSO. Some of the complexes have higher activity than the free ligand and the standard.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.