154
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, spectral, and thermal studies of oxomolybdenum(V) Schiff-base complexes derived from heterocyclic β-diketone

&
Pages 1597-1610 | Received 29 Sep 2009, Accepted 05 Jan 2010, Published online: 27 May 2010
 

Abstract

Six mononuclear Mo(V) Schiff-base complexes were prepared by the reaction of MoCl5 with Schiff bases, namely HL1–HL3 and HL4–HL6, such as 5-hydroxy-3-methyl-1(2-chloro)phenyl-1H-pyrazolone-4-carbaldehyde (I), 5-hydroxy-3-methyl-1(3-chloro)phenyl-1H-pyrazolone-4-carbaldehyde (II), and 5-hydroxy-3-methyl-1(3-sulfoamido)phenyl-1H-pyrazolone-4-carbaldehyde (III) with ethanolamine and propanolamine, respectively, in aqueous ethanolic medium. The resulting complexes have been characterized by elemental analyses, molar conductance, FT-IR, 1H-NMR, electronic, electron spin resonance (ESR) spectra, magnetic susceptibility, and thermal study. The molar conductivity data show them to be non-electrolytes. IR and 1H-NMR spectral data suggest that the ligand is a dibasic bidentate with ON donor toward metal ion. Electronic, magnetic, and ESR spectral data suggest that the oxomolybdenum(V) complexes have distorted octahedral geometry. One chloride coordinated to molybdenum is confirmed by thermal study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.