155
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Recognition and catalytic hydrolysis of adenosine 5′-triphosphate by cadmium(II) and L-glutamic acid

&
Pages 3441-3453 | Received 23 Dec 2010, Accepted 18 Jul 2011, Published online: 29 Sep 2011
 

Abstract

Interactions among Cd2+, glutamic acid (Glu), and adenosine 5′-triphosphate (ATP) have been studied by potentiometric pH titration, IR, Raman, fluorescence, and NMR methods. In the Cd2+–ATP binary system, the main interaction sites are the α-, β-, and γ-phosphate groups, N-1, and/or N-7. Cd2+ binds to the N-1 site at relatively low pH and binds to the N-7 site of adenosine ring of ATP with increasing pH. In the Cd2+–Glu–ATP ternary system, ATP mainly binds to Cd2+ by the triphosphate chain. Oxygens of Glu coordinate with Cd2+ to form a complex to catalyze ATP hydrolysis. Hydrolysis of ATP catalyzed by the CdGlu complex was studied at pH 7.0 and 80°C by 31P-NMR spectrometry. Kinetics studies showed that the rate constant of ATP hydrolysis was 0.0199 min−1 in the ternary system, which is 9.9-fold faster than that in the ATP solution (2.01 × 10−3 min−1). Hydrolysis occurs through an addition–elimination reaction mechanism with Cd2+ regulating the recognition and catalytic hydrolysis of ATP; water participates in the hydrolysis reaction of ATP at different steps with different functions in the ternary system.

Acknowledgments

The authors thank Mr Zhiqiang Shen for his technical assistance in obtaining NMR spectra. This study is supported by the 973 Program under the Grant no. 2009CB22003.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.