181
Views
27
CrossRef citations to date
0
Altmetric
Articles

Copper(II) and molybdenum(VI) complexes with 5-bromosalicylaldehyde S-allylisothiosemicarbazone: Syntheses, characterizations and crystal structures

, , &
Pages 345-357 | Received 17 Jun 2012, Accepted 20 Sep 2012, Published online: 23 Jan 2013
 

Abstract

A new tridentate Schiff base, 5-bromosalicylaldehyde S-allylisothiosemicarbazone hydrobromide (H2L), and several new mononuclear complexes of copper(II) and molybdenum(VI) of this ligand with general formulas ([Cu(L)Im] (1)), ([Cu(L)NH3]·4H2O (2)), and ([MoO2(L)1-MeIm] (3), Imidazole: Im, 1-methylimidazole: 1-MeIm) were prepared and characterized by elemental analyses, IR, proton magnetic resonance Spectroscopy, and ultraviolet–visible techniques. The physico-chemical results suggested that the H2L coordinates in the dianionic tridentate form. Crystal structures of the Cu(II) complexes reveal a square planar configuration surrounded by the dianionic tridentate isothiosemicarbazone (ONN) and Im and NH3 for 1 and 2, respectively. The L2-, two oxo, and 1-methylimidazole are coordinated to molybdenum(VI) in a distorted octahedral geometry in 3. Formation of pure metal oxide residues was confirmed by thermal degradation of the complexes.

Acknowledgements

Reza Takjoo would like to thank the Ferdowsi University of Mashhad for supporting this work. We thank the Università di Messina (Italy) for the provision of a diffractometer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.