239
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Elaborated spectral analysis and modeling calculations on Co(II), Ni(II), Cu(II), Pd(II), Pt(II), and Pt(IV) nanoparticles complexes with simple thiourea derivative

, , , , , & show all
Pages 993-1009 | Received 17 Sep 2014, Accepted 12 Dec 2014, Published online: 02 Feb 2015
 

Abstract

A series of metal complexes was synthesized using a simple thiourea derivative. The prepared complexes were characterized using different techniques (FTIR, ESR, X-ray diffraction [XRD], TG/DTA, and TEM). The FTIR spectrum of the ligand shows the presence of its tautomer forms (keto–enol). The ligand coordinates as a neutral bidentate in the Pt(IV), Pd(II), and Pt(II) complexes. In the case of Co(II) and Ni(II) complexes, the ligand is mono-negative bidentate. The proposed complexes are four to six coordinate. The geometries are proposed based on electronic spectral data and magnetic measurements and were verified using other tools. The XRD patterns reflect the nanocrystalline structures except for the Cu(II) complex, which is amorphous. The TEM images for platinum complexes show nanosize particles and homogeneous metal ion distribution on the complex surface. The EPR spectrum of Cu(II) complex verified the octahedral geometry of the complex. Molecular modeling was performed to assign the structural formula proposed for the ligand based on the characterization results.

Transmission electron micrographs of the Pt(IV) complex; inset shows the magnified image.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.