563
Views
16
CrossRef citations to date
0
Altmetric
Articles

Ring-opening polymerization of lactide using salen–aluminum complexes bearing Schiff-base ligands derived from cis-1,2-cyclohexanediamine

, , , , , , , & show all
Pages 656-667 | Received 07 Mar 2015, Accepted 23 Oct 2015, Published online: 29 Dec 2015
 

Abstract

Three aluminum complexes supported by salen ligands derived from cis-1,2-cyclohexanediamine and salicylaldehyde derivatives were synthesized. They were characterized by 1H, 13C NMR spectra, and elemental analysis. X-ray diffraction analysis revealed that aluminum was in distorted square pyramidal geometry in 2. These complexes were employed as catalysts for the ring-opening polymerization (ROP) of L-lactide and rac-lactide. Complex 2 showed the highest activity among these complexes with isopropanol for the ROP of L-lactide and 3 showed the highest stereoselectivity for the ROP of rac-lactide attaining partially isotactic polylactide with a Pm of 0.75. The kinetic data of the polymerization utilizing 3 as catalyst showed that the polymeric rate was first order to the monomer and catalyst.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1 Pm is the probability of meso linkages: [mmm] = Pm2 + (1 − Pm)Pm/2, [mmr] = [rmm] = (1 − Pm)Pm/2, [rmr] = (1 − Pm)2/2, and [mrm] = [(1 − Pm)2 + Pm(1 − Pm)]/2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.