313
Views
5
CrossRef citations to date
0
Altmetric
Articles

Catalytically active metal organic framework based on a porphyrin modified by electron-withdrawing groups

, , &
Pages 746-755 | Received 28 Jun 2016, Accepted 11 Oct 2016, Published online: 22 Dec 2016
 

Abstract

One metal-free porphyrin, modified by electron-withdrawing groups, was synthesized by introduction of two peripheral pyridyl substituents and two metal coordination polymers, {[Zn(C42H16F10N6)]·2C2H7 N}n (1) and {[Co(C42H16F10N6)]·C2H7 N}n (2), were synthesized solvothermally. In 1, each porphyrin connected four other porphyrin molecules to construct a 2-D network through coordination bonds. Similarly, in 2 every Co(II) porphyrin coordinated with four adjacent molecules to form a 2-D framework. Thermogravimetric analyses indicate that both 1 and 2 show high-thermal stabilities. The fluorescence data of 1 and 2 show that 1 may be a candidate for potential inorganic–organic photoactive materials. Catalytic oxidation results show that 2 displays high activity with the only product acetophenone quantitatively in 81.4%, and after six cycles, the catalytic activity slightly decreases. These features of 2, including the exceptional stability, and high catalytic activity, make it outstanding among MOFs reported in the literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.