268
Views
13
CrossRef citations to date
0
Altmetric
Articles

Different conjugated system Cd(II)/Hg(II) Schiff base complexes: syntheses, supramolecular metal−organic frameworks, luminescent properties and DFT study

, , , , &
Pages 1953-1972 | Received 08 Dec 2016, Accepted 18 Apr 2017, Published online: 29 May 2017
 

Abstract

A series of different conjugated systems of 2D/3D supramolecular metal-organic frameworks (SMOFs) are constructed by C/O−H⋯Cl hydrogen bonds and π⋯π interactions. These complexes, [HgL1Cl2] (1), [HgL2Cl2] (2), [HgL3Cl2] (3), [CdL4Cl4]2 (4), and [CdL5Cl2(CH3OH)] (5), have been synthesized and characterized by single-crystal X–ray diffraction, 1H NMR, FT–IR, and EA. The X-ray diffraction analyses reveal that 1 features a 3D supramolecular framework with {44·66} topology structure, while 2, 3, and 5 exhibit 3D 6-connected {412·63} topology structures. Complex 4 shows a two-dimensional layer with 44 topology structure. Based on these varied structures caused by different conjugated system, the emission maximum wavelengths of 15 can be tuned in a large range of 492–587 nm. Both electron-donating ability and the conjugated system in general can support λem shift to red direction. In order to have better understanding of electronic transitions of the complexes, a time-dependent DFT study has been performed. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates potential to serve as photoactive materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.