718
Views
39
CrossRef citations to date
0
Altmetric
Articles

Novel sulfonated hydrophilic indium(III) and gallium(III) phthalocyanine photosensitizers: preparation and investigation of photophysicochemical properties

ORCID Icon, , &
Pages 2659-2670 | Received 22 Jun 2017, Accepted 24 Jul 2017, Published online: 22 Aug 2017
 

Abstract

The new tetra-non-peripherally benzenesulfonic acid-substituted hydrophilic gallium chloride and indium chloride phthalocyanine complexes have been synthesized by cyclotetramerization of 4-(2,3-dicyanophenyl)benzenesulfonic acid (1). The newly synthesized phthalocyanines have been characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, mass and UV–vis spectroscopy techniques. The water-soluble gallium(III) phthalocyanine derivative (2) was aggregated in aqueous media but was fully disaggregated in the presence of a surfactant Triton X-100. The incorporation of sulfonate moieties of the phthalocyanine macrocycle provides hydrophilic character to the new compounds, which is useful for drug administration and serves as crucial in PDT application. So, the photochemical properties (singlet oxygen quantum yields and photodegradation quantum yields) and photophysical properties (fluorescence behavior) of the complexes were reported in different solutions (DMSO and water). The results of spectral measurements showed that both np-GaPc (2) and np-InPc (3) can be used as sensitizers in PDT because of their singlet oxygen efficiencies.

Acknowledgement

E. Güzel thanks TÜBİTAK for scholarship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.