159
Views
8
CrossRef citations to date
0
Altmetric
Articles

Isomeric organic ligand dominating polyoxometalate-based hybrid compounds: synthesis and as electrocatalysts and pH-sensitive probes

, , , , &
Pages 468-482 | Received 23 Dec 2017, Accepted 29 Jan 2018, Published online: 07 Mar 2018
 

Abstract

By introducing isomeric organic ligands into polyoxometalate (POM) systems, two new POM-based hybrid compounds, [Cu6(m-pyttz)2(H2O)][HPMo12O40] (1) and [Ag3(p-H2pyttz)(p-Hpyttz)Cl][H2PMo12O40]·6H2O (2) (m-/p-H2pyttz = 3-(pyrid-3/4-yl)-5(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), have been hydrothermally synthesized and characterized. Single-crystal structural analysis shows the m-pyttz ligands link CuI ions to generate a two-dimensional layer with hanger-like rhombus, which is pillared by the PMo12 anions in 1. Compound 2 exhibits a three-dimensional supramolecular framework, in which PMo12 anions are building blocks facilitating the extension of the whole structure. The influence of the coordination modes of m-/p-H2pyttz on the structures is discussed in detail. Furthermore, electrochemical properties of 1 and 2 have been studied and they display excellent electrocatalytic activities toward the reduction of nitrite and hydrogen peroxide and pH-dependent electrochemical behaviors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.