112
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis, cytotoxicity, apoptosis and cell cycle arrest of a monoruthenium(II)-substituted Dawson polyoxotungstate

, , &
Pages 633-644 | Received 19 Apr 2018, Accepted 16 Nov 2018, Published online: 11 Feb 2019
 

Abstract

By 5-h reaction of cis-[RuIICl2(DMSO)4] (M2) with K102-P2W17O61] (M3) in ice-cooled, HCl-acidic aqueous solution, a water-soluble 1:2-type diamagnetic ruthenium(II) complex of formula K18[RuII(DMSO)2(P2W17O61)2]·35H2O (M1) was unexpectedly obtained as an analytically pure, homogeneous tan-colored solid, in which two DMSO ligands are coordinated to the ruthenium(II) atom. The cytotoxic potential of the complex was tested on C33A, DLD-1, and HepG-2 cancer cells and human normal embryonic lung fibroblasts cell MRC-5; the viability of the treated cells was evaluated by MTT assay. The mode of cell death was assessed by morphological study of DNA damage and apoptosis assays. Compound M1 induced cell death in a dose-dependent manner, and the mode of cell death was essentially apoptosis though necrosis was also noticed. Cell cycle analysis by flow cytometry indicated that M1 caused cell cycle arrest and accumulated cells in S phase.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (No. 21701120), the Natural Science Fund of Shanxi Province (No. 201601D202024) and Doctor Fund of Taiyuan University of Science and Technology (No. 20172005).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.