196
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Crystal structures and antibacterial properties of Cu(II) complexes containing an unsymmetrical N2O Schiff base ligand and bidentate N-donor heterocyclic co-ligands

, , , , &
Pages 2326-2336 | Received 27 Feb 2019, Accepted 23 Jun 2019, Published online: 31 Jul 2019
 

Abstract

Three new Cu(II) Schiff base complexes with bidentate N-donor heterocyclic co-ligands, 2,2'-bipyridine (1), 1,10-phenanthroline (2), and 2,9-dimethyl-1,10-phenanthroline (3), were synthesized and characterized by FT-IR and UV-vis spectroscopy. Molecular structures of [C20H21CuN4O](ClO4) (1) and [C24H25CuN4O](ClO4) (3) were characterized by single-crystal X-ray crystallography. The Schiff base ligand is an N2O-type ligand, which is the mono-condensed form of the reaction between 1,3-propanediamine and salicylaldehyde. The antibacterial activities of these complexes were investigated against one gram positive and four gram negative bacteria. Considerable antibacterial activity was obtained against both gram type bacteria. Complexes 2 and 3 with 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline, respectively, showed better antibacterial activity compared to 1 which has the 2,2'-bipyridine co-ligand.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.