129
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nanoscale synthesis, structural elucidation, DFT, and biological activity of amide appended transition metal(II) macrocyclic complexes in drug delivery system

, , , , &
Pages 2843-2857 | Received 23 Aug 2022, Accepted 10 Nov 2022, Published online: 03 Jan 2023
 

Abstract

Nanoscale complexes of Mn(II), Ni(II), and Cu(II) with 6,15-diamino-1,4,9,12-tetraazacyclohexadecane-5,8,13,16-tetraone were synthesized by ultrasonic sonication method. The Fourier-transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectroscopy, carbon, hydrogen, and nitrogen elemental (CHN) analysis, mass spectrometry (MS), and electron spin resonance (ESR) spectroscopy were used to identify and suggest the structure of the synthesized nanocomplexes. The field emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (PXRD) revealed that the size of the synthesized nanocomplexes was 44–58 nm. Based on these studies, hexagonal, monoclinic, and cubic unit cell structure has been proposed for the synthesized Mn(II), Ni(II), and Cu(II), respectively. The theoretical calculations of the synthesized nanocomplexes were carried out by a GAUSSIAN 09 program involving geometry optimization and bond parameters using the B3LYP method. Moreover, binding energy, HOMO, and LUMO have been calculated. In addition, hardness, softness, chemical potential, and dipole moment were calculated for ligand and its metal nanocomplexes. The biological efficacy of the synthesized nanocomplexes was examined and found to be better and highly effective drug delivery system (DDS) for the antimicrobial and antioxidative agent.

Acknowledgment

The authors are grateful to authorities of TIET, Patiala, for providing necessary research facilities.

Disclosure statement

The authors have no conflicts to declare.

Additional information

Funding

The authors are grateful to Council of Scientific & Industrial Research, New Delhi, for financial help in the form junior research fellowship (file no. 09/140(0180)/2020-EMR-I).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,057.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.