30
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

LIQUID-SOLID MASS TRANSFER AT HORIZONTAL WOVEN SCREENS WITH UPWARD COCURRENT GAS-LIQUID FLOW

, &
Pages 43-56 | Received 10 Nov 1999, Accepted 28 Jun 2000, Published online: 24 Oct 2007
 

Abstract

Rates of liquid-solid mass transfer at horizontal single screens and an array of horizontal parallel separated screens were studied under upward cocurrent gas (N2)-liquid bubbly flow using the electrochemical technique. Variables studied were gas and liquid flow rates, and screen characteristics (e.g., mesh number and wire diameter)

Under the present conditions where relatively low solution flow rates were used the rate of mass transfer was found to be mainly determined by the gas flow rate. For a given gas flow rate, the mass transfer coefficient decreased with increasing solution flow rate. The data for single screen were correlated with a dimensionless equation. Rates of mass transfer at an array of separated horizontal screens were lower than those at the single screen by an amount ranging from 3 to 45% depending on screen mesh number and flow conditions. The importance of the present study for building continuous high space time yield catalytic, and electrochemical reactors suitable for electrochemical air pollution control is highlighted.

Additional information

Notes on contributors

I. NIRDOSH

Corresponding author. Tel.: 8073438170, Fax: 8073438928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.