63
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

ADAPTIVE NEURAL-NETWORK PREDICTIVE CONTROL FOR NONMINIMUM-PHASE NONLINEAR PROCESSES

&
Pages 177-193 | Published online: 15 Jan 2007
 

Abstract

An adaptive neural-network predictive control strategy for a class of nonlinear processes, which exhibit input multiplicities and change in the sign of steady-state gains, is presented. According to the graphic-based determination associated with prescribed input/output patterns, the feed-forward neural network (FNN) is attributed to reconstruct dynamic and steady-state characteristics of minimum-phase modes with specified operating ranges. The flexible predictive control strategy using on-line neuro-based adaptation is developed for enhancing the predictive capability of neural network. Finally, the proposed FNN-based implementation is illustrated on simulations of both isothermal and adiabatic CSTR systems.

Acknowledgments

This work was supported by the National Science Council of Taiwan under grant number NSC92-2214-E-224-002.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.