277
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

CONTROLLED GROWTH OF COPPER NANOPARTICLES AND NANORODS IN THE CHANNELS OF SBA-15 BY SUPERCRITICAL FLUID DEPOSITION

, &
Pages 627-632 | Published online: 04 Dec 2009
 

Abstract

Copper nanoparticles and nanorods were prepared in the one-dimensional channels of SBA-15 supported by a modified supercritical fluid deposition (SCFD) method. In this approach, cheap and widely available copper nitrate, which is insoluble in supercritical CO2 (scCO2), was used as the copper source and ethanol as the co-solvent, thus avoiding the employment of expensive and less available scCO2-soluble precursors. The deposition was carried out at the pressure of 21–25 MPa and temperature of 50°C, followed by calcinations at 500°C and H2 reduction at 500°C. The results showed that highly dispersed Cu nanoparticles or nanorods were obtained controllably just by varying the deposition time, as characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). On the other hand, when Cu(acac)2 was used as the precursor and without any co-solvent, only nanoparticles were formed in the channels of SBA-15 no matter how long the deposition time.

Acknowledgment

The authors warmly thank the National Science Foundation of China for its support (20976026, 20976028).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.