53
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

THERMOSOLUTAL INSTABILITY OF A COMPRESSIBLE ROTATING WALTERS' (MODEL B′) ELASTICO-VISCOUS FLUID IN THE PRESENCE OF HALL CURRENTS

&
Pages 1225-1239 | Published online: 15 Mar 2010
 

Abstract

Effect of Hall currents is considered on Walters' (Model B′) elastico-viscous fluid heated and soluted from below in the presence of a vertical magnetic field. A dispersion relation governing the effects of viscoelasticity, salinity gradient, rotation, magnetic field, and Hall current is derived. For the case of stationary convection, the Walters' (Model B′) fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation, and magnetic field postpone the onset of thermosolutal instability, whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wave numbers as small/large. Again, the dispersion relation is analyzed numerically and the results depicted graphically. The viscoelasticity, solute gradient, and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system that were nonexistent in their absence. The case of over-stability is discussed and sufficient conditions for nonexistence of over-stability are derived.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.