261
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

PHENOLIC WASTEWATER TREATMENT BY SUPPORTED LIQUID MEMBRANE USING DIFFERENT COOKING OILS AS LIQUID MEMBRANE

, , &
Pages 1593-1605 | Published online: 23 Jun 2014
 

Abstract

Transport of phenol through a flat sheet supported liquid membrane (SLM) containing cooking oil as liquid membrane (LM) was investigated. Factors affecting permeation of phenol such as membrane phase, support material, feed phase pH, stripping phase concentration, stirring speed, and initial concentration of phenol were studied. It was found that these parameters strongly influence phenol removal efficiency; PTFE membrane as support material, grape seed oil as liquid membrane, feed pH of 2.0, initial phenol concentration of 100 mg/L, stirring speed of 350 rpm, and 0.2 M sodium hydroxide as effective stripping agent were found as the best conditions for greater phenol transport. Under these conditions, permeability was found to be 7.46 × 10−6 m/s. After 10.5 h, phenol was completely removed from the feed phase to strip phase. According to stability experiments, it was observed that the SLM is stable after 22 h. Thus, the use of cheap, nontoxic, and naturally oil as a novel and green membrane for recovery of phenol from wastewater was demonstrated.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcec.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.