256
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An Efficient Measure for Quantification of Nonlinearity in Chemical Engineering Processes Based on I/O Steady-State Loci

, &
Pages 1557-1563 | Published online: 29 Jul 2015
 

Abstract

Nonlinearity is virtually ubiquitous in chemical engineering plants, and assessing the degree of nonlinearity involved in a process is of special interest for process control purposes. In this paper, we introduce a simple nonlinearity measure to quantify the extent of nonlinearity in a dynamic system based on its normalized steady-state input/output loci. Our nonlinearity measure obviates the limitations of previous metrics in terms of computational effort and correct identification of highly nonlinear relationships. The measure is satisfactorily applicable to various I/O relationships—from truly linear to sinusoidal, for instance. In order to illustrate the efficiency of the proposed measure, four numerical examples concerning a double-effect evaporator, a jacketed continuously stirred tank reactor (CSTR) with an irreversible reaction, a CSTR involving van de Vusse reactions, and the Henson–Seborg–Pottmann CSTR are presented.

Acknowledgments

We are obliged to the editor and reviewers of the CECJ for their valuable comments. Also, we sincerely thank Prof. Randolph Rach of the George Adomian Center for Applied Mathematics in Hartford, Michigan, who helped us improve English language usage in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.