122
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A Self-Adjustment Optimization Method of Composite Initiator Concentration for Vinyl Chloride Suspension Polymerization

, , &
Pages 1676-1684 | Published online: 30 Jul 2015
 

Abstract

The productivity of batch processes is related to the time required to complete each batch. A self-adjustment optimal method for the vinyl chloride (VC) suspension polymerization is proposed for minimizing polymerization time. By optimizing the concentration of the composite initiators, the polymerization reaction proceeds smoothly so that the cooling capacity of the reactor is fully utilized and the polymerization time is minimized accordingly. In this work, a thermodynamic model is presented to estimate both online reaction advancement and the heat transfer characteristic of the reactor; a kinetic model of composite initiators is referenced to predict the polymerization rate; and a parameter adjustment model is applied to adjust the initiator partition coefficient of the kinetic model for ensuring the prediction performance and compute the maximum limiting polymerization rate for updating the constraints of optimization model. Results show that by choosing the optimal concentration of composite initiators under the constraints of reaction kinetics, maximum limiting polymerization rate, etc., a significant reduction in the total processing time is achieved.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.