111
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of Lubricant Materials Using Ruthenium Isomerization

, , , , &
Pages 901-907 | Published online: 30 Mar 2016
 

Abstract

Production of an effective industrial lubricant additive from vegetable oils is a high profile and difficult undertaking. One candidate is alkyl 9(10)-dibutylphosphonostearate, which has been made through a radical transformation of alkyl 9-cis-octadecanoate. It is effective, but still suffers from drawbacks. In this report, that synthesis is combined with a ruthenium based isomerization process to create not just one, but an entire series of new chemical compounds. A low level of [Ru(CO)2(EtCO2)]n is first used for the isomerization of the starting material, then radical chemistry is employed. A series of methyl dibutylphosphonooctadecanoates was made. In an analogous fashion, trans-7-tetradecene was also isomerized and then polymerized. As in the phosphonate case, the follow-up chemistry could be performed in the presence of the residual isomerization catalyst. The alkane:alkene ratio, observed by 1H NMR, was found to change from 14:1 in the isomerized starting material to a value of 41:1 in the polymerized material. This methodology, isomerization in tandem with other reactions, gives suitable routes to both biobased polyolefins, and biobased phosphonates, potential key ingredients in biobased lubrication formulations.

Acknowledgments

The authors acknowledge Karl E. Vermillion for NMR spectra used in this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.