175
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analysis of pressure fluctuations for oil-gas two-phase flow in a horizontal pipe using the bubble number density equation

, , , &
Pages 351-364 | Published online: 02 Apr 2021
 

Abstract

Visualization experiments and numerical simulations of two-phase flow are conducted to study the pressure fluctuation characteristics of oil-gas flow in horizontal pipes. The two-fluid model based on the Eulerian–Eulerian method is adopted, and the bubble number density equation (BNDE) is introduced to the simulation to predict the bubble size and distribution within the pipe. The bubble size and pressure variations in the pipe obtained from the simulations agree well with the recorded values from the experiments. The fast Fourier transform (FFT) algorithm is used to analyze the characteristics of pressure fluctuations, and the results show that the sudden pressure increase in the pipe sections is related to gas injection. The bubble number density increases with liquid flow rate (Ql), which causes the oil-gas flow to be more turbulent while increasing the amplitude of high-frequency fluctuations. The maximum amplitude for the dominant frequency is observed near the pump inlet for low liquid flow rates. At high liquid flow rates, more liquid vortices are found near the gas orifice, and there is a maximum amplitude for the dominant frequency in this section. Due to the high swirling strength at larger inlet gas volume fraction (IGVF), there is an obvious increase in the amplitude of low-frequency fluctuations, while the amplitude of high-frequency fluctuations is nearly the same under all IGVF.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

This study was supported by Beijing Municipal Natural Science Foundation [grant number 3212021]; the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering (sklhse-2021-E-01); the Open Research Subject of Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education [grant number szjj2019-005].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.