238
Views
3
CrossRef citations to date
0
Altmetric
Articles

Changes in chemical and structural composition of sugarcane bagasse caused by alkaline pretreatments [Ca(OH)2 and NaOH] modify the amount of endoglucanase and β-glucosidase produced by Aspergillus niger in solid-state fermentation

, , , , , , & show all
Pages 594-606 | Published online: 09 Feb 2021
 

Abstract

The aim of this study was to evaluate the treatment effects of Ca(OH)2 solutions applied at different concentrations (2.5%, 5%, and 7.5%) on the structural and chemical composition of sugarcane bagasse (SCB). The feasibility of using the SCB as a substrate for endoglucanase and β-glucosidase production by Aspergillus niger through solid-state fermentation was also assessed. Sodium hydroxide (NaOH) 5% was used as a positive control/benchmark. Changes in SCB cell wall compositions was determined using 13C solid-state nuclear magnetic resonance. While cellulosic fiber content and the production of endoglucanase (345.01 ± 139 U.gDM−1) increased using Ca(OH)2 as pretreatment for sugarcane bagasse, hemicellulose, lignin, alkyl C and carboxyl C content decreased. Comparisons between pretreated and non-pretreated SCB revealed that the highest values of β-glucosidase (58.18 ± 9.86 U.gDM−1) occurred in non-pretreated samples. The SCB pretreated with NaOH resulted in the highest delignification values (-49.88%) and the greatest hemicellulose remotion (-53.47%). However, this treatment also increased crystallinity index (CI; + 23.61%) in cellulose and showed the lowest endoglucanase (22.79 ± 11 U.gDM−1) and β-glucosidase (4.71 ± 1.44 U.gDM−1) activities. This study claims that cellulose CI, hemicellulose, and other nutrients (e.g., amino acids) are important variables that should be considered along with delignification, in the substrates selection for cellulase production using filamentous fungi.

Acknowledgments

To CONACyT for the doctoral scholarship of Christian Hernández and to Mexican and French governments for financial (Grant ECOS NORD-Mexique M13A02). To the anonymous reviewers who contributed to improve this paper.

Additional information

Funding

This work was supported by the ECOS NORD-Mexique under Grant M13A02.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.