349
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of photocatalytic activity of TiO2 nanotubes synthesized by hydrothermal method

&
Pages 1383-1403 | Published online: 29 Jul 2022
 

Abstract

TiO2 nanotubes were synthesized by hydrothermal reaction using commercially available TiO2 powder at 150 °C for 24 h. The transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption isotherms and Fourier Transform-Infrared spectroscopy were used to characterize the nanotubes. Anatase phase was not transformed into rutile phase in the range of calcination temperature studied. Increase in calcination temperature result in enhancement of crystallinity and reduction in BET surface area. Photocatalytic removal of Reactive Red 239 (RR239) was investigated using prepared TiO2 nanotubes. Effects of pH, TiO2 nanotube dosage, initial RR239 concentration and calcination temperature were studied. 99%, 97% and 55% of removal efficiency values were attained at pH = 3, 5 and 7, respectively within 60 min or reaction time. With an increase in dosage of TiO2 nanotube in the range of 0.25–0.75 g dm−3, removal rate increased by a steeper slope. Complete removal of RR239 was observed at 20 mg dm−3 RR239 concentrations within 30 min but longer time was required for complete removal at higher concentrations. Langmuir-Hinshelwood kinetic expression was proposed based on nonlinear regression analysis. The removal efficiency of nanotubes calcined at 300 − 450 °C significantly increased but further increase in calcination temperature caused to decrease the efficiency.100% and 85% removal efficiency values were observed using actual solar light within 120 min of reaction time in July and January, respectively. Experiments conducted with scavengers showed that holes and adsorbed hydroxyl radicals were the major species involved in removal of RR239. A pathway for degradation of RR239 was suggested according to detected intermediate compounds.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was financially supported by Scientific Research Projects Coordination Unit of Inonu University under BAP grant number 2014/08.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.