Publication Cover
Phase Transitions
A Multinational Journal
Volume 84, 2011 - Issue 1
71
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of autogenous seeding on densification and microstructure in processing of γ-alumina nanopowders

, , &
Pages 1-14 | Received 17 Feb 2010, Accepted 06 Aug 2010, Published online: 13 Dec 2010
 

Abstract

The effect of α-Al2O3 seeds and MgO on the densification behavior and microstructure of the nanocrystalline γ-Al2O3 powder was investigated. The required α-Al2O3 seeds were produced by ‘autogenous seeding’ where the seeds were obtained by calcination of the initial nanosized γ-Al2O3 powders above its transformation temperature and incorporated into γ-Al2O3 matrix. The seeds were characterized by means of laser particle size analyzer, X-ray diffraction, and Brunauer–Emmett–Teller surface analyzer. The simultaneous influence of α-Al2O3 seeds and MgO on γ-Al2O3 behavior was evaluated by differential thermal analysis, densitometry, and electron microscopy. The results showed that simultaneous presence of MgO and seeds in γ-Al2O3 matrix has a great impact on densification and microstructural evolution. The main role of MgO and the seeds are densification enhancement and grain refinement, respectively. The grain morphology is more equiaxed and desirably finer by using smaller seeds prepared using shorter calcination times.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.