Publication Cover
Phase Transitions
A Multinational Journal
Volume 85, 2012 - Issue 1-2
653
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Phase transformation of ZrO2 nanoparticles produced from zircon

, , , , &
Pages 13-26 | Received 01 Mar 2011, Accepted 26 Aug 2011, Published online: 10 Nov 2011
 

Abstract

This article focuses on the phase transformation of zirconia (ZrO2) nanoparticles produced from zircon using a bottom-up approach. The influence of mechanical milling and thermal annealing on crystalline phase transformation of ZrO2 nanoparticles was explored. It was found that the iron oxide, as an inherent impurity present in ZrO2 nanoparticles, produced from zircon stabilises the cubic phase after calcination at 600°C. The stabilised cubic phase of ZrO2 nanoparticles was disappeared and transformed into partial tetragonal and monoclinic phases after mechanical milling. The phase transformation occurred on account of the crystal defect induced by high-energy mechanical milling. The destabilisation of cubic phase into monoclinic phase was observed after the thermal annealing of ZrO2 nanoparticles at 1000°C. The phase transitions observed are correlated to the exclusion of iron oxide from the zirconia crystal structure.

Acknowledgements

The authors thank the Department of Science and Technology, New Delhi, India for the financial support provided to carry out this research project (SR/S5/NM-40/2005 dated 26 June 2007).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.