Publication Cover
Phase Transitions
A Multinational Journal
Volume 85, 2012 - Issue 12
188
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Influence of sintering temperature and pH on the phase transformation, particle size and anti-reflective properties of RHA nano silica powders

, , &
Pages 1109-1124 | Received 22 Jan 2012, Accepted 23 Feb 2012, Published online: 12 Apr 2012
 

Abstract

Nano silica powders were synthesized from rice husk ash, the most silica-rich raw material, using alkaline extraction followed by acid precipitation. The phase transformation during sintering, the influence of sintering temperature and pH on the particle size and anti-reflective properties of nano silica were investigated. The results showed that the amorphous SiO2 sintered at 600°C were transformed to a cristobalite structures completely during the sintering process at 800°C and 1100°C. With the increasing sintering temperature and pH, the particle size distributions (d50) were increased respectively in the range of 62–84, 192–240, and 283–329 nm at sintering temperatures of 600°C, 800°C, and 1100°C. When the sintering temperatures were increased at 1100°C, 98.15% and 96.84% of transmittances were obtained respectively at the highest and lowest points of the anti-reflection band and could be used for anti-reflective applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.