294
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Freezing in relaxor ferroelectrics and dipolar glasses

&
Pages 222-233 | Received 16 Jul 2014, Accepted 27 Sep 2014, Published online: 17 Nov 2014
 

Abstract

A recently proposed semi-phenomenological model of freezing in relaxor ferroelectrics, based on the concept of polar nanoregions (PNRs) embedded in a polarizable medium, is reviewed. A generalized Landau-type free energy for the medium is discussed, where the medium polarization couples linearly to the PNR polarization. When the fourth-order Landau coefficient is negative (b < 0), the correlation radius rc, which measures the PNR size, depends on the temperature T and the applied field E. As T is lowered or E increased, rc increases and the volume of a cluster of PNRs grows until the percolation limit is reached. This leads to a generalized expression for the Vogel-Fulcher (VF) relaxation time with a field-dependent VF freezing temperature T0(E). The case b > 0, in which the percolation mechanism cannot be realized, is considered to be appropriate for dipolar glasses.

Note

Note that Equation (Equation4) describes only the properties of the medium and not the global behavior of the relaxor system.

Additional information

Funding

This work was supported by the Slovenian Research Agency under programs P1-0125 and P1-0044, and by the NAMASTE Centre of Excellence.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.