Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 12
146
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Dielectric relaxation and ac conduction in multiferroic Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 ceramics: impedance spectroscopy analysis

, , &
Pages 1213-1224 | Received 03 Nov 2015, Accepted 24 Feb 2016, Published online: 07 Apr 2016
 

ABSTRACT

The solid solutions of Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 have been prepared by the solid-state reaction method. The preliminary structural studies were carried out by X-ray diffraction technique showing the formation of polycrystalline sample with ABO3 type of perovskite structure with hexagonal symmetry for the Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 ceramic system at room temperature. Dielectric properties and impedance study of this ceramic have been characterized in the temperature range room temperature to 375 °C and frequency range 100 Hz–1 MHz. The maximum ferroelectric transition temperature (Tc) of this system was in the range 200 °C–260 °C with the dielectric constant of peak to be ∼30,170 at 1 kHz. The complex impedance plot exhibited one impedance semicircle observed at low temperature, whereas two semicircles above 80 °C and the centres of the semicircles lie below the real axis, which indicates that the material is non-Debye type. Single semicircle is explained by the grain effect of the bulk and double semicircle is due to the bulk and grain boundary effect. The bulk resistance and grain boundary resistance of the materials decrease with the increasing temperature, showing negative temperature and a typical semiconducting property, i.e. negative temperature coefficient of resistance behaviour.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Authors are grateful to the Defence Research and Development Organization (DRDO), Govt. of India, for financial support under the research project ERIP/ER/1303129/M/01/1564.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.