134
Views
13
CrossRef citations to date
0
Altmetric
Articles

Origin of the colossal permittivity of (Nb + In) co-doped rutile ceramics by wide-range dielectric spectroscopy

, , &
Pages 932-941 | Received 18 May 2018, Accepted 12 Jul 2018, Published online: 19 Jul 2018
 

ABSTRACT

Searching for giant dipolar defects, suggested as the explanation of the colossal permittivity (CP) in (Nb + In) co-doped rutile, we have recently published (J. Appl. Phys. 119, 154105 (2016) and Phys. Rev. Mat., in press) temperature-dependent dielectric spectra from sub-Hz to THz range (including 4-point DC conductivity) of several (Nb + In) co-doped rutile ceramics. Using the model of two leaky capacitor in series below ∼1 MHz, we estimated the depletion layer thickness and conductivity. The spectra below ∼10 GHz were fitted with two Cole–Cole relaxations obeying the Arrhenius law, assigned to the effect of depletion layers and grain boundaries. In this paper, using effective medium models, we have for the first time modelled the spectra as a composite of semiconducting grains and substantially less-conducting grain boundaries and near-electrode depletion layers. The CP effect has been fully explained by the combination of surface and internal barrier-layer capacitor effects, without any measurable contribution from the dipolar defects.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was supported by the Czech Science Foundation (Project No. 18-09265S) and Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 – CZ.02.1.01/0.0/0.0/16_019/0000760). The work was also supported by the National Science and Engineering Research Council of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.