225
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Physical vapour deposition growth and transmission electron microscopy characterization of epitaxial thin metal films on single-crystal Si and Ge substrates

, &
Pages 1547-1578 | Received 22 May 2000, Accepted 07 Sep 2000, Published online: 05 Aug 2009
 

Abstract

Epitaxial fcc, bcc and hcp metal and alloy films were grown in high vacuum by physical vapour deposition at high rate (‘flash’ deposition) on the (111), (110) and (100) surfaces of Si and Ge at different deposition temperatures. The resulting epitaxial relationships and morphological features of these films were characterized by transmission electron microscopy and diffraction. Simple epitaxial relationships were found mainly for the fcc metals that form binary eutectic systems with Si and Ge. Of these, Ag exhibited exceptional behaviour by forming in a single crystal cube-cube relationship on all six semiconductor surfaces. Al and Au both formed bicrystal films on (100) substrates but differed in their behaviours on (111) substrates. Silicide formers such as the fcc metals Cu and Ni, as well as all bcc and hcp metals investigated, did not adopt epitaxial relationships on most semiconductor substrates. However, epitaxial single-crystal, bicrystal and tricrystal films of several metals and alloys could be grown by using a Ag buffer layer. The factors controlling the epitaxial growth of metal films are discussed in the light of the observations and compared with the predictions of established models for epitaxial relationships. It is concluded that epitaxial films can be grown easily if the film forms a simple eutectic or monotectic system with the substrate. The epitaxial relationships of those films depend on crystallographic factors for metal-metal epitaxy and on the substrate surface structure for metal-semiconductor epitaxy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.