120
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Fracture in nanolamellar materials: Continuum and atomistic models with application to titanium aluminides

, &
Pages 2397-2417 | Received 25 Aug 2001, Accepted 07 Mar 2002, Published online: 04 Aug 2009
 

Abstract

Molecular statics simulations of crack growth in fully lamellar Ti-Al are performed to elucidate the role of lamellar structure in determining deformation and fracture toughness in nanoscale structures. The lamellar boundaries are highly effective in inhibiting dislocation transfer from one phase into the other, indicating that interfacial dislocation pinning influences the competition between dislocation emission and cleavage. A continuum model for dislocation emission and cleavage fracture of blunted cracks is thus extended to account for dislocation shielding and crack blunting in nanolamellar materials, leading to material classifications of brittle (cleavage with no dislocation emission), ductile (dislocation emission with no cleavage) and quasiductile (dislocation emission followed by cleavage). In the quasiductile regime, the material toughness is predicted to scale with the square root of the lamellar thickness, that is thicker lamellae are tougher, and the number of emitted dislocations at cleavage scales linearly with the lamellar thickness. Simulations of crack growth in nanoscale γ-TiAl surrounded by α2-Ti3Al show quasiductile behaviour with the fracture toughness and number of emitted dislocations scaling as predicted by the model. Simulations of crack growth in α2 surrounded by γ layers show no evidence of cleavage fracture, and hence this phase is ductile. Cracks at the γ-α2 interface are found to blunt and deflect into the γ phase, showing that this interface is not a low-toughness boundary. The fracture toughnesses computed for the γ-TiAl are comparable with those measured experimentally on oriented polysynthetically twinned crystals of Ti-Al. These results indicate that, (i) nanoscale material toughness may scale with grain size owing to the inhibition of dislocation propagation by grain boundaries or interfaces, (ii) the fracture toughness in fully lamellar Ti-Al microstructures is controlled by thin layers of TiAl sandwiched between Ti3Al layers and, (iii) the microcracking observed in these materials may be caused by the spatial variations in TiAl lamellar thickness intrinsic to these microstructures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.