66
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Atomistic study of dislocation nucleation in Ge/(001)Si heterostructuses

&
Pages 281-295 | Received 29 Sep 1994, Accepted 10 Jan 1995, Published online: 27 Sep 2006
 

Abstract

Nucleation of misfit dislocations in Ge/(001)Si heterostructures is investigated theoretically by an atomistic model based on the Stillinger-Weber potential (Stillinger and Weber 1985, Phys. Rev. B, 31, 5262). Both 60° and 90° dislocations are considered, and the energy is calculated as a function of distance of dislocations from the free surface in a thin-film heterostructure. The critical thicknesses of the dislocation nucleation obtained from the atomistic simulation are larger than the previously reported results of the continuum analysis, and we attribute this difference mainly to core energy of dislocations. The activation bamer for dislocation nucleation from the surface is estimated from the variation of energy with distance of a dislocation from the surface. The calculated activation energy is much larger than the thermal energy at normal growth temperatures. We also discuss the interaction between two 60° dislocations and the formation of a 90° dislocation at the interface by a dislocation reaction mechanism.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.