78
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Atomic structure of Σ7(0112) symmetrical tilt grain boundaries in α-Al2O3

, , &
Pages 529-544 | Received 07 Nov 1994, Accepted 10 Jan 1995, Published online: 27 Sep 2006
 

Abstract

High resolution transmission electron microscopy is used to study the atomic structure of a Σ7 grain boundary (Σ is equal to the reciprocal of the fraction of lattice sites in coincidence) in Al2O3. This grain boundary in Al2O3 has misorientation [0111]/180°. The grain boundary plane is (0112)1∥(0112)2. Four possible unrelaxed grain boundary structures can be constructed from the constrained coincidence-sitelattice (CCSL) patterns. The atomic structure of the boundary is determined from a through-focal series of high resolution images and computer image simulation. A DSC dislocation in the Σ7 grain boundary was identified. The Burgers vector of this dislocation is 1/14[0552] and it is a pure edge dislocation. Most of the boundary has a structure comprising oxygen terminating layers with an identical width of 0·135 nm, known as the α-domain. There are no unsaturated Al-O bonds in the boundary core of the a domain, but the Al-O bonds are slightly elongated. Coexistence of two interfacial domains, α and β, is observed. The domain has the same atomic structure as that of α domain, but the width of the interfacial layers is 0·17 nm. These two interfacial structures show different contrast in the high resolution images and are separated by partial-DSC dislocations in the Σ7(0112) grain boundary. The Burgers vector of the partial-DSC dislocations can be determined with reference to the interfacial structures, CCSL patterns, step vector and close failure of the Burgers circuit. The partial-DSC dislocations in the Σ7(0112) grain boundary always appear as a pair which resembles a stacking fault in the bulk of the crystal.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.