133
Views
3
CrossRef citations to date
0
Altmetric
Articles

A theoretical study of Cu-H2O nano-fluid effect on heat transfer enhancement of a solar water heater

, &
Pages 286-294 | Received 26 Jun 2014, Accepted 20 Aug 2015, Published online: 21 Oct 2015
 

ABSTRACT

In the present work, an attempt has been made to enhance the heat transfer in a solar water heater by using Cu nano-particles dispersed in water for various concentrations ranging from 0% to 5%. Considerable improvement in the solar collector efficiency is obtained by increasing the nano-particle concentration up to 17.5 for a concentration of 5% and for a mass flow rate ratio of 10. The outlet water temperature increases by increasing the nano-particle concentration up to 8.35% for a concentration of 5% and for a mass flow rate ratio of 5. The study showed that the solar heater collecting area takes into account significant factors for increasing the outlet temperature. An increase in the collecting area of the solar water heater by 6 times could increase the water temperature by 39% for a 5% nano-particle volume fraction. The helical heat exchanger effectiveness is increased up to 65.71 for a concentration of 5% for a mass flow rate ratio of 10.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 275.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.