217
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A discrete element cohesive particle collision model for the prediction of ash-induced agglomeration

ORCID Icon &
Pages 1158-1166 | Received 13 Apr 2018, Accepted 03 Mar 2019, Published online: 25 Mar 2019
 

Abstract

The utilisation of energy crops or residues in fluidised beds shows large potentials as a sustainable source of renewable energy. The compositional range of their ashes, however, can lead to the formation of large agglomerates, causing operational problems or defluidization.

In this paper a novel cohesive contact model was developed that extends previously published wet collision models to account for the transition of highly viscous liquids to amorphous solids as the dominant agglomeration criteria. Previously published thermochemical equilibrium calculations using FactSage 6.2 were incorporated for the determination of required melt fractions and material properties. The contact model evaluates viscous dissipation within the molten ash coatings, capillary forces in liquid bridges and elastic forces of the solid particle cores. Finally, two-particle-collisions were simulated in a discretized VBA-script incorporating this contact model. A primary validation was performed with controlled agglomeration tests (350 runs, 83 fuels, 7 reactors). The presented model is able to reproduce the experimental parameter influences with good accuracy and shows predictive performance on par with previously published models (prediction error of ±30%).

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 275.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.