189
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Classification of SAR images using a general and tractable multiplicative model

, , &
Pages 3565-3582 | Received 01 Jun 1999, Accepted 02 Jul 2002, Published online: 13 May 2010
 

Abstract

Among the frameworks for Synthetic Aperture Radar (SAR) image modelling and analysis, the multiplicative model is very accurate and successful. It is based on the assumption that the observed random field is the result of the product of two independent and unobserved random fields: X and Y. The random field X models the terrain backscatter and, thus, depends only on the type of area to which each pixel belongs. The random field Y takes into account that SAR images are the result of a coherent imaging system that produces the well-known phenomenon called speckle noise, and that they are generated by performing an average of n statistically independent images (looks) in order to reduce the noise effect. There are various ways of modelling the random field X; recently the Γ−1/2(α, γ) distribution was proposed. This, with the usual Γ1/2(n, n) distribution for the amplitude speckle, resulted in a new distribution for the return: the (α, γ, n) law. The parameters α and γ depend only on the ground truth, and n is the number of looks. The advantage of this distribution over the ones used in the past is that it models very well extremely heterogeneous areas like cities, as well as moderately heterogeneous areas like forests and homogeneous areas like pastures. As the ground data can be characterized by the parameters α and γ, their estimation in each pixel generates parameter maps that can be used as the input for classification methods. In this work, moment estimators are used on simulated and on real SAR images and, then, a supervised classification technique (Gaussian maximum likelihood) is performed and evaluated. Excellent classification results are obtained.

Acknowledgments

This work was partially supported by grants from the Brazilian agencies CNPq (Proc. 523469/96-9) and Vitae. Hans J. Müller (Deutsche Forschungsanstalt für Luft-und Raumfahrt, Institut für Hochfrequenztechnik, Germany) kindly provided the images used in this work. The authors are grateful for the suggestions provided by the anonymous referees.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.