97
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Neural network determination of cloud attenuation to estimate insolation using MTSAT‐1R data

, , &
Pages 6193-6208 | Received 29 Apr 2007, Accepted 25 Mar 2008, Published online: 23 Oct 2008
 

Abstract

Surface solar insolation (SSI) is an important parameter for interpreting ocean–atmosphere interactions, climate change, surface heat flux, and the Earth's radiation budget. The successful calculation of SSI from satellite data depends strongly on how cloud attenuation is described because most clouds have large spatial and temporal variability and complicated physical characteristics. Moreover, the accuracy of SSI estimation under cloudy conditions is substantially lower than under clear skies. We have generated a neural network (NN)‐based cloud factor retrieval system that improves SSI estimation accuracy under cloudy conditions. We used a multilayer feedforward NN with Levenberg–Marquardt backpropagation and an early stopping method to avoid overfitting. The number of hidden nodes was determined by trial and error because a too complicated network is apt to overfit, whereas a too simple network makes training the network difficult. Validation of the estimated SSI using the NN‐based cloud factor was performed with pyranometer data obtained from 22 meteorological stations over the Korean peninsula. This SSI estimation for cloudy conditions showed good agreement with ground‐based measurements: root mean square error (RMSE) = 67.38 W m−2; standard error (SE) = 54.78 W m−2. This accuracy indicates that the use of an NN‐based cloud factor improves SSI estimation over the previous cloud factor system (SSIT: RMSE = 78.03 W m−2, SE = 52.64 W m−2) and the multiple regression‐based cloud factor (SSIMR: RMSE = 79.20 W m−2, SE = 67.55 W m−2).

Acknowledgements

This work was funded by the Korean Meteorological Administration Research and Development Programme under Grant CATER 2007‐4106. The total ozone data used in this study were produced by the National Aeronautics and Space Administration/Goddard Space Flight Center TOMS Team.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.