198
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Natural vegetation responses to warming climates in Qaidam Basin 1982–2003

&
Pages 5685-5701 | Received 11 Mar 2007, Accepted 23 Mar 2008, Published online: 19 Oct 2009
 

Abstract

In this paper, we quantified vegetation variations in the Qaidam Basin from 1982 to 2003 by using growing-season NDVI sequences, which were defined as the summation of monthly NDVI values from May to September, and were calculated pixel-by-pixel from a successive 8-km NDVI dataset. We adopt linear regressions to examine the trends in growing-season NDVI and the trends in climate (temperature, precipitation and sunshine duration) during this period in an attempt to depict their temporal and spatial variability. Our results indicate that climate in the Qaidam Basin has homogeneously warmed at a rate of about 0.6°C/decade during the study period, with significant trends in monthly mean temperatures in April–September. However, there were no statistically significant trends observed in precipitation and sunshine duration. We found positive growing-season NDVI trends in 31.6% of the vegetated lands in 1982–2003 and in 24.1% over the first half period, 1982–1992. In addition, few areas were shown to have negative trends during these periods. In 1993–2003, however, the percentage of land with a positive trend decreased to 13.1%, and the percentage of vegetated land with a negative trend increased to 10.2%. Growing-season NDVI trends show both temporal and spatial variability. Areas with negative trends are distributed mostly at lower elevations and near oasis boundaries, and areas with positive trends at higher elevations. Using correlation analyses we estimated the relationship between growing-season NDVI and the climatic factors with the consideration of duration and lagging effects. The results suggest that growing-season NDVI trends are more correlated to temperature increases in growing-season months when compared to variations in precipitation and sunshine duration; however increased precipitation amounts within May–August can also facilitate vegetation growth in some of this arid basin. However, we found no significant correlations between growing-season NDVI and temperature in the non-trend areas, which account for the majority of the vegetated land. We suggest that the variability in vegetation responses to the observed warming climates results from the differences in background thermal condition and moisture availability, which depend on elevation and other factors, such as hydrological conditions.

Acknowledgement

This research is supported by the Innovation Team Project (No. 40421101) of National Natural Science Foundation and the Outstanding Young Teacher Project (No.20022031) of the Ministry of Education, PR China. The authors would like to thank GIMMS group for kindly sharing the NDVI data and thank the Chinese Natural Sources Web for providing the climatic and vegetation maps. We are very grateful to the two anonymous reviewers for their helpful comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.