271
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic application of oceanographic variables from multi-satellite sensors for forecasting potential fishing zones: methodology and validation results

, , , , &
Pages 775-789 | Received 19 Feb 2008, Accepted 29 Apr 2008, Published online: 23 Feb 2010
 

Abstract

This study uses synergistic application of satellite-derived chlorophyll concentration (CC), sea surface temperature (SST) and sea surface wind (SSW) for forecasting potential fishing zones (PFZs). PFZs are validated in near-real time through fishing operations and detailed statistical analysis of fishing operation data. CC and SST images were derived from Indian Remote Sensing Satellite-Ocean Colour Monitor (IRS-OCM) and NOAA-AVHRR, respectively, to delineate the oceanographic features exhibiting different oceanic processes. QuikSCAT/SeaWinds derived sea surface wind vectors were used to understand, quantify and demonstrate the variability of wind-induced water mass flow as well as their impacts on features/oceanographic process. Oceanographic features such as eddies, rings and fronts were found to be shifted according to the speed and direction of the wind. An algorithm was developed to compute water mass transport and feature shift. An improved methodology was developed and demonstrated using these prime variables, which are responsible for fishery resources distribution. PFZ forecasts were generated and validated through near-real-time fishing operations. The fishing operations data were taken from the logbooks of fishing vessels for detailed statistical analysis. On average, 80% of observations were recorded with more yield than monthly mean catch in the respective areas. A paired t-test showed statistically significant results.

Acknowledgements

The authors are grateful to Dr R.R. Navalgund, Director, Space Applications Centre (SAC), and Dr K.L. Majumdar, Deputy Director, Remote Sensing and Image Processing Area (RESIPA, SAC) for their interest and encouragement during the execution of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.