127
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A computationally efficient inverse modelling approach of inherent optical properties for a remote sensing model

&
Pages 4349-4371 | Received 18 Feb 2008, Accepted 02 Nov 2008, Published online: 13 Sep 2010
 

Abstract

Inverse modelling of inherent optical properties (IOP) is an alternative to the in situ measurements of IOP requiring specialized instruments. However, inverse modelling using Monte Carlo models may require very large computational time due to a large number of dynamic model runs needed to search the optimum parameter values. We present a new approach to reduce this computational time. Mathematical relationships were developed for wavelength and concentration dependence of IOP values of suspended mineral based on four parameters. Optimal values of these four parameters were calculated by minimizing the mean sum of error between the physical hyperspectral optical-Monte Carlo (PHO-MC) model predicted reflectance to measured reflectance values for selected 33 reflectance measurements for a set of 11 wavelengths and three suspended sediment concentrations. The computation time was significantly reduced by several orders of magnitude by: (1) replacing the PHO-MC model with 11 wavelengths specific pseudo-simulator models developed by applying artificial neural network approach; and (2) using a nondominated sorted genetic algorithm –II (NSGA II) to search the global optimal solution of four parameters of IOP equations. Determined IOP values of suspended minerals were then successfully validated by using them as input to PHO-MC model to predict reflectance values for an independent set of 287 combinations of 41 wavelengths and seven suspended sediment concentrations.

Acknowledgements

This study was funded by US Environmental Protection Agency (X7-97654601-0) and the USDA-CSREES through the Regional Research Project (S-1042: Modeling for TMDL development, and watershed based planning, management and assessment). We thank Dr Sreekala G. Bajwa for providing spectroradiometer for experimental data collection. Comments by Dr K. P. Sudheer and two anonymous reviewers improved the initial version of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.