125
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of implementing satellite observed aerosols into a mesoscale atmosphere model

, , &
Pages 5505-5525 | Received 22 Jul 2009, Accepted 18 Sep 2009, Published online: 08 Jul 2011
 

Abstract

This study investigated the performance of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) in calculating the aerosol forcing on cloud cover, incoming surface solar radiation, and near-surface air temperature via the implementation of aerosol optical depth in the shortwave radiation parameterization. MM5 simulations with and without aerosol data are performed in the periods of 6–7 August 2003 and 19–21 September 2003 during which strong aerosol forcing was observed with Moderate Resolution Imaging Spectroradiometer (MODIS) data in the mid-Atlantic region. Both periods clearly showed that aerosols had a direct negative effect on surface solar radiation through aerosol scattering. For example, every 0.1 change in MODIS aerosol optical thickness (AOT) results in 44 and 59 W m−2 decreases in surface solar radiation for the first and second periods, respectively. A magnitude of 0.1 increment in MODIS AOT reduces air temperature 0.36 and 0.56 K for the first and second periods, respectively. Comparisons with satellite-derived surface solar radiation retrievals showed that aerosol implementation in MM5 consistently showed better incoming surface solar radiation than that of the non-aerosol case. This helps to reduce uncertainties related to the radiation–cloud–aerosol interaction in numerical weather modelling systems.

Acknowledgements

This study was supported and monitored by the CALIPSO project under Grant Number NAS1-97042. The authors are grateful to the UMD SRB grub for providing satellite retrievals and NASA Gateway to quick access to MODIS aerosol data. Permission has been sought and granted to reproduce the material in both print and online editions of the journal.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.