335
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Speckle reduction for the forest mapping analysis of multi-temporal Radarsat-1 images

, &
Pages 1349-1359 | Received 27 Aug 2010, Accepted 28 Feb 2011, Published online: 07 Nov 2011
 

Abstract

As the number of satellite-borne synthetic aperture radar (SAR) systems increases, both the availability and the length of multi-temporal (MT) sequences of SAR images have also increased. Previous research on MT SAR sequences suggests that they increase the classification accuracy for all applications over single date images. Yet the presence of speckle noise remains a problem and all images in the sequence must be speckle filtered before acceptable classification accuracy can be attained. Several speckle filters designed specifically for MT sequences have been reported in the literature. Filtering in the spatial domain, as is usually done, reduces the effective spatial resolution of the filtered image. MT speckle filters operate in both the spatial and temporal dimensions, thus the reduction in resolution is not likely to be as severe (although a comparison between MT and spatial filters has not been reported). While this advantage may be useful when extracting spatial features from the image sequence, it is not quite as apparent for classification applications. This research explores the relative performance of spatial and MT speckle filtering for a particular classification application: mapping boreal forest types. We report filter performance using the radiometric resolution as measured by the equivalent number of looks (NL), and classification performance as measured by the classification accuracy. We chose representative spatial and MT filters and found that spatial speckle filters offer the advantage of higher radiometric resolution and higher classification accuracy with lower algorithm complexity. Thus, we confirm that MT filtering offers no advantage for classification applications; spatial speckle filters yield higher overall performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.