225
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Statistical learning algorithms for identifying contrasting tillage practices with Landsat Thematic Mapper data

, , , , &
Pages 5732-5745 | Received 05 Apr 2011, Accepted 27 Dec 2011, Published online: 27 Mar 2012
 

Abstract

Tillage management practices have a direct impact on water-holding capacity, evaporation, carbon sequestration and water quality. This study examines the feasibility of two statistical learning algorithms, namely the least square support vector machine (LSSVM) and relevance vector machine (RVM), for identifying two contrasting tillage management practices using remote-sensing data. LSSVM is firmly based on statistical learning theory, whereas RVM is a probabilistic model where the training takes place in a Bayesian framework. Input to the LSSVM and RVM algorithms were reflectance values at different bandwidths and indices derived from Landsat Thematic Mapper (TM) data. Ground-truth data for this study were collected from 72 commercial production fields in two counties located in the Texas High Plains of the south-central USA. Numerous LSSVM- and RVM-based tillage models were developed and evaluated for tillage classification accuracy. The percentage correct and kappa statistic were used for the evaluation. The results showed that the best LSSVM and RVM models included the use of TM band 5 or vegetation indices that involved TM band 5, indicating sensitivity of near-infrared reflectance of crop residue cover on the surface. This is consistent with other remote-sensing models reported in the literature. Overall classification accuracies of the best LSSVM and RVM models were 87.8 and 90.2%, respectively. The corresponding kappa statistics for those models were 0.75 and 0.80, respectively. Furthermore, comparison of the best LSSVM and RVM models with the published logistic regression-based tillage models developed with the same data indicated the superiority of the RVM model over LSSVM and logistic regression models in determining contrasting tillage practices with Landsat TM data.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.