207
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A northerly winter monsoon surge over the South China Sea studied by remote sensing and a numerical model

, , &
Pages 7361-7381 | Received 17 Jan 2011, Accepted 05 Oct 2011, Published online: 10 Jul 2012
 

Abstract

A northerly winter monsoon surge, which occurred on 15 December 2009 over the South China Sea (SCS), is studied by using satellite-based and ground-based remote-sensing data and an atmospheric numerical model. The remote-sensing data are from the advanced synthetic aperture radar (ASAR) onboard the Environmental Satellite (Envisat), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra satellite, the imager onboard the geostationary satellite MTSAT-1R (Multi-Functional Transport Satellite-1R) and the weather radar of the Hong Kong Observatory (HKO). A northerly winter monsoon surge is a cold air outbreak associated with a northerly wind, the passage of a cold front from north to south and a strong drop in air temperature. The analyses of the weather radar and the MTSAR-1R images of 15 December show that the surge of 15 December was associated with a rain band and a cloud front travelling over the SCS in a southeastward direction. Due to the interaction of the cold air (13°C) with the warm water (19°C), they dissolved when they had reached an offshore distance of approximately 160 km. The high-resolution (150 m) ASAR image reveals fine-scale features of the wind field, in particular details of the wind front, such as embedded rain cells and atmospheric gravity waves. Quantitative information on the near-surface wind field is retrieved from the ASAR, and it is shown that the wind field associated with the surge is quite variable and that speeds up to 15 m s–1 are encountered in coastal wind jets. Finally, the remote-sensing data are compared with the simulation results of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model of the HKO. It is shown that, in general, the AIR model reproduces quite well the observational data.

Acknowledgements

We thank European Space Agency (ESA) for providing the ASAR images free of charge within the ESA-MOST Dragon 2 project 5316. We also thank Alexis Mouche of Collecte Localisation Satellites (CLS), Radar Applications, France, for calculating the SAR image spectrum and Gerd Mueller of the Meteorological Institute of the University of Hamburg for very fruitful discussions on the interpretation of the observed atmospheric phenomena.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.