476
Views
77
CrossRef citations to date
0
Altmetric
Original Articles

Particle swarm optimization-based sub-pixel mapping for remote-sensing imagery

, &
Pages 6480-6496 | Received 10 Sep 2010, Accepted 01 Sep 2011, Published online: 23 May 2012
 

Abstract

Mixed pixels are widely existent in remote-sensing imagery. Although the proportion occupied by each class in mixed pixels can be determined by spectral unmixing, the spatial distribution of classes remains unknown. Sub-pixel mapping (SPM) addresses this problem and a sub-pixel/pixel spatial attraction model (SPSAM) has been introduced to realize SPM. However, this algorithm fails to adequately consider the correlation between sub-pixels. Consequently, the SPM results created by SPSAM are noisy and the accuracy is limited. In this article, a method based on particle swarm optimization is proposed as post-processing on the SPM results obtained with SPSAM. It searches the most likely spatial distribution of classes in each coarse pixel to improve the SPSAM. Experimental results show that the proposed method can provide higher accuracy and reduce the noise in the results created by SPSAM. When compared with the available modified pixel-swapping algorithm, the proposed method often yields higher accuracy results.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 60802059 and Foundation for the Doctoral Programme of Higher Education of China under Grant No. 200802171003. The authors thank the reviewers for providing constructive comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.