488
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands

&
Pages 6668-6694 | Received 16 Feb 2011, Accepted 17 Feb 2012, Published online: 06 Jun 2012
 

Abstract

We report the results from modelling standing volume, above-ground biomass and stem count with the aim of exploring the potential of two non-parametric approaches to estimate forest attributes. The models were built based on spectral and 3D information extracted from airborne optical and laser scanner data. The survey was completed across two geographically adjacent temperate forest sites in southwestern Germany, using spatially and temporally comparable remote-sensing data collected by similar instruments. Samples from the auxiliary reference stands (called off-site samples) were combined with random, random stratified and systematically stratified samples from the target area for prediction of standing volume, above-ground biomass and stem count in the target area. A range of combinations was used for the modelling process, comprising the most similar neighbour (MSN) and random forest (RF) imputation methods, three sampling designs and two predictor subset sizes. An evolutionary genetic algorithm (GA) was applied to prune the predictor variables. Diagnostic tools, including root mean square error (RMSE), bias and standard error of imputation, were employed to evaluate the results. The results showed that RF produced more accurate results than MSN (average improvement of 3.5% for a single-neighbour case with selected predictors), yet was more biased than MSN (average bias of 5.13% with RF compared to 2.44% with MSN for stem volume in a single-neighbour case with selected predictors). Combining systematically stratified auxiliary samples from the target data set with the reference data set yielded more accurate results compared to those from random and stratified random samples. Combining additional data was most influential when an intensity of up to 40% of supplementary samples was appended to the reference set. The use of GA-selected predictors resulted in reduced bias of the models. By means of bootstrap simulations of RMSE, the simulations were shown to lie within the applied non-parametric confidence intervals. The achieved results are concluded to be helpful for modelling the mentioned forest attributes by means of airborne remote-sensing data.

Acknowledgements

This research was supported by a doctoral scholarship awarded by the German Academic Exchange Service (DAAD). The Graduate School ‘Environment, Society and Global Change’ (ESGC) of the University of Freiburg financially facilitated English proofreading done by Nathan A. Briggs. We thank the Forest Service of Baden-Württemberg for providing the required forest inventory data. We are particularly grateful to Dr Arne Nothdurft from the Forest Research Institute of Baden-Württemberg and Nicholas L. Crookston from the USDA Forest Service for their valuable technical support and encouragement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.