327
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Spatially adaptive smoothing parameter selection for Markov random field based sub-pixel mapping of remotely sensed images

, &
Pages 7886-7901 | Received 29 Jun 2011, Accepted 28 Feb 2012, Published online: 16 Jul 2012
 

Abstract

Sub-pixel mapping is a process to provide the spatial distributions of land cover classes with finer spatial resolution than the size of a remotely sensed image pixel. Traditional Markov random field-based sub-pixel mapping (MRF_SPM) adopts a fixed smoothing parameter estimated based on the entire image to balance the spatial and spectral energies. However, the spectra of the remotely sensed pixels are always spatially variable. Adopting a fixed smoothing parameter disregards the local properties provided by each pixel spectrum, and may probably lead to insufficient smoothing in the homogeneous region and over-smoothing between class boundaries simultaneously. This article proposes a spatially adaptive parameter selection method for the MRF_SPM model to overcome the limitation of the fixed parameter. As pixel class proportions are indicators of the type and proportion of land cover classes within each coarse pixel, in the proposed method, fraction images providing pixel class proportions as local properties of each pixel spectrum are employed to constrain the smoothing parameter. Consequently, the smoothing parameter is spatially adaptive to each pixel spectrum of the remotely sensed image. Synthetic images and IKONOS multi-spectral images were employed. Results showed that compared with the hard classification method and the non-spatially adaptive MRF_SPM adopting a fixed smoothing parameter, the spatially adaptive MRF_SPM with the smoothing parameter constrained to each pixel spectrum yielded sub-pixel maps not only with higher accuracy but also with shapes and boundaries visually reconstructed more closely to the reference map.

Acknowledgements

This work was supported in part by the Knowledge Innovation Programme of the Chinese Academy of Sciences (No. kzcx2-yw-141), the Natural Science Foundation of China (No. 40801186) and the Wuhan Youth Chenguang Project (No. 200950431218). We thank V. A. Tolpekin of the Faculty of Geo-Information Science and Earth Observation (ITC) for his kind help on the MRF_SPM model and image simulation method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.